nl KENSIUM

LJPOS 2 QAcumatica

Since & Until Values

@any API endpoints support theskip (and first) parameters to implement data paging. This type of
paging is great when filter fields don’t change often.

One situation where these paging parameters do not work well is when syncing data. Syncing usually
needs page results by modification timestamp. Problems can occur however, if the underlying data
changes while a caller is paging through results. The chance of this increases when dealing with large
data sets, such as sales history, inventory or customer records.

Furthermore - depending on the data type - a modification timestamp may not have sufficient resolution
to be the sole sort criteria used for sorting modified results. Additional data has to be added to the
criteria used to sort results. API callers should not need to bother with determining these criteria.

To get around these problems, several API endpoints also support a since parameter (and until result)
that should be used for paging based on modification date. To use them, you:

e Call the API endpoint with a blank - not null - since parameter.
o A blank value indicates that since paging should be started from the first set of results.
o A null value indicates that no ‘since’ paging should be used.
¢ You receive the endpoint results, making note of the until value that is returned.
* To get the next ‘page’ of data, you call the API again, passing the until value as the new since
parameter value.

Format

You should treat Since and Until parameters as opaque values, without attempting to parse them for
meaningful information. POS will generate the since and until values depending on the type of data it is

paging.

POS may change the internal format it uses for since and until values. For this reason, do not
parse the values or rely upon their internal format.

© 2025 Kensium LLC %{ KENSIUM



nl KENSIUM

LJPOS 2 QAcumatica

Storage

u may store an until value (i.e. the since value for the next API call) if you are implementing a data
synchronization process that runs at timed intervals. The value should be stored as a raw string value.
While there is no technical limit to the until value size, they are typically short. If storing in a database
it’s still good practice to store them as VARCHAR (MAX) or equivalent.

In major version changes - or critical bug fixes - POS may change the format of an until value.
If you have stored an until value with an older format, you may receive an

INVALID SINCE FORMAT error in your next API call. It’s good practice to detect and handle
this error.

Example

Initial Query

This example uses a simple call to the sale endpoint, but the same approach can be applied to any
endpoint that supports since and until parameters.

For the first call to the endpoint, ensure the since value is a blank string:

query MyQuery {
sale(since: "", first: 2) {
until
results {
id
}
}
}

We are also supplying a first parameter for the purposes of this example - to limit the number of
results returned - but POS will supply a default first value if you do not specify your own.

The endpoint will return a response similar to:

{
"data": {

© 2025 Kensium LLC %{ KENSIUM



£ KEnsium

POS = Q Acumatica

"sale": {
"until": "1554830160000;4499096027743125506;",
"results": [

=] {
"id": "4499096027743125505"
},
{
"id": "4499096027743125506"
}
]
}
}
}

Note the until value - this is what you will pass in the next call.

Next Query

For the next call to the endpoint, pass the last until value as the since parameter value:

query MyQuery {
sale(since: "1554830160000;4499096027743125506;", first: 2) {
until
results {
id
}
}
}

You'll receive a response similar to:

{
"data": {
"sale": {

"until": "1554830880000;4499096027743125508;",

"results": [
{

"id": "4499096027743125507"

b

{
"id": "4499096027743125508"

V7

© 2025 Kensium LLC ”\

KENSIUM



£ KEnsium

POS = Q Acumatica

}
]
}
=y
}
Final Query

You can continue the process above to iterate through all pages of modified data. You will know that
there are no longer any data modifications when the until value returned is null:

{

"data": {

"sale": {
"until": null,
"results": []

}

}
}
Throttling

POS currently does not enforce automated throttling of API calls when executing multiple calls with
since and until parameters.

It is good practice - particularly when calling the API of POS Cloud servers - to ensure that you add a
small time delay between API calls.

© 2025 Kensium LLC %{ KENSIUM



